Searching On:

Disease:

Gene:

Beta-Catenin (CTNNB1), all mutations

View:
Expand Collapse No disease selected  - General Description
Mass General Hospital Cancer Center treats patients with many cancer types. To learn more about the different cancer types that can be treated at the Cancer Center, please visit the Cancer Center website at the following page: http://www.massgeneral.org/cancer/services/
Expand Collapse Beta-Catenin (CTNNB1)  - General Description The CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway. The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration. In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1. Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma. Source: TumorPortal.orgThe CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway. The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration. In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1. Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma. Source: TumorPortal.org
CLICK IMAGE FOR MORE INFORMATION
The CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway.

The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration.

In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1.

Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma.

Source: TumorPortal.org
The CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway.

The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration.

In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1.

Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma.

Source: TumorPortal.org
PubMed ID's
19619488, 22682243
Expand Collapse all mutations  in Beta-Catenin (CTNNB1)
Mutations in CTNNB1, the gene that encodes the beta-catenin protein, have been found in many cancers with varying frequencies. Specific mutations T41A, S45A have been studied and are oncogenic; S23R, D32Y, D32G, D32A, D32N, D32H, D32V, S33Y, S33C, S33A, S33F, G34E, G34V, G34A, I35S, H36P, S37F, S37Y, S37C, S37A, S37P, S37T, T41I, T41N, T41P, T41S, P44A, S45F, S45C, S45del, S45P, S45T, S45Y, K335I, W383R, and N387K are likely to be oncogenic, resulting in accumulation of beta catenin in cells which stimulates growth even in the absence of a WNT signal.

Source: TumorPortal.org
Mutations in CTNNB1, the gene that encodes the beta-catenin protein, have been found in many cancers with varying frequencies. Specific mutations T41A, S45A have been studied and are oncogenic; S23R, D32Y, D32G, D32A, D32N, D32H, D32V, S33Y, S33C, S33A, S33F, G34E, G34V, G34A, I35S, H36P, S37F, S37Y, S37C, S37A, S37P, S37T, T41I, T41N, T41P, T41S, P44A, S45F, S45C, S45del, S45P, S45T, S45Y, K335I, W383R, and N387K are likely to be oncogenic, resulting in accumulation of beta catenin in cells which stimulates growth even in the absence of a WNT signal.

Source: TumorPortal.org

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (G) - Gene, (M) - Mutation
Trial Status: No record found.
Protocol # Title Location Status Match
MGH has many open clinical trials for other cancers not shown on the Targeted Cancer Care website. They can be found on the MassGeneral.org clinical trials search page.

Additional clinical trials may be applicable to your search criteria, but they may not be available at MGH. These clinical trials can typically be found by searching the clinicaltrials.gov website.
There are currently no clinical trials available for your selection. New clinical trials are being approved every day. Please continue to check back for updates.
Trial Status: No record found.

Share with your Physican

Print information for your Physician.

Print information