Searching On:

Disease:

Gene:

Lung Cancer, ROS1

View:
Expand Collapse Lung Cancer  - General Description This year about 226,000 people in the U.S. will be told by a doctor that they have lung cancer. However, about 390,000 Americans remain alive today after having been diagnosed with this malignancy. Lung cancer includes tumors that begin in tissues lining air passages inside the lungs and bronchi. The bronchi are the 2 branches of the windpipe (trachea) that lead to the lungs. Based on how the cells look under a microscope, lung cancers are divided into 2 main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of these cases.

The main subtypes of NSCLC are squamous cell carcinoma (cancer beginning in thin, flat scaly-looking cells), adenocarcinoma (cancer beginning in cells that make mucus and other substances) and large cell carcinoma (cancer beginning in several types of large cells). The 2 main types of SCLC are small cell carcinoma (oat cell cancer) and combined small cell carcinoma.

Lung cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the bloodstream and go to other places in the body. In these distant places, the cancer cells cause secondary tumors to grow. The main sites to which lung cancer spreads are the adrenal gland, liver and lungs.

To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a node near the primary tumor and a pathologist looks at it through a microscope to see if cancer cells are present. Several kinds of imaging also can be performed to determine if the cancer has spread. These include MRI, bone scans and endoscopic ultrasound (EUS).

The FDA has approved several targeted therapies to treat patients with NSCLC. These include bevacizumab (Avastin), cetuximab (Erbitux), erlotinib (Tarceva), gefitnib (Iressa) and crizotinib (Xalkori). So far there are no FDA-approved targeted therapies for SCLC.

Despite significant improvements in the treatment of lung cancers, novel therapies and treatment strategies are needed.

Source: National Cancer Institute, 2012
Estimated new cases and deaths from lung cancer (non-small cell and small cell combined) in the United States in 2012:

New cases: 226,160
Deaths: 160,340

Lung cancer is the leading cause of cancer-related mortality in the United States. The 5-year relative survival rate from 1995 to 2001 for patients with lung cancer was 15.7%. The 5-year relative survival rate varies markedly depending on the stage at diagnosis, from 49% to 16% to 2% for patients with local, regional and distant stage disease, respectively.

NSCLC arises from the epithelial cells of the lung, from the central bronchi to the terminal alveoli. The histological type of NSCLC correlates with the site of origin, reflecting the variation in respiratory tract epithelium from the bronchi to the alveoli. Squamous cell carcinoma usually starts near a central bronchus while adenocarcinoma usually originates in peripheral lung tissue.

Tobacco smoking is the strongest risk factor for developing lung cancer, though it should be noted that the majority of patients diagnosed with lung cancer quit smoking years prior to diagnosis or were never-smokers (up to 15% of cases).

The identification of driver oncogene mutations in lung cancer has led to the development of targeted therapy that has vastly broadened treatment options and improved outcomes for subsets of patients with metastatic disease. It is now common practice to determine the genotype of a NSCLC patient early in the course of their diagnosis, to ensure that all possible treatment options are considered.

Source: National Cancer Institute, 2012
This year about 226,000 people in the U.S. will be told by a doctor that they have lung cancer. However, about 390,000 Americans remain alive today after having been diagnosed with this malignancy. Lung cancer includes tumors that begin in tissues lining air passages inside the lungs and bronchi. The bronchi are the 2 branches of the windpipe (trachea) that lead to the lungs. Based on how the cells look under a microscope, lung cancers are divided into 2 main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of these cases.

The main subtypes of NSCLC are squamous cell carcinoma (cancer beginning in thin, flat scaly-looking cells), adenocarcinoma (cancer beginning in cells that make mucus and other substances) and large cell carcinoma (cancer beginning in several types of large cells). The 2 main types of SCLC are small cell carcinoma (oat cell cancer) and combined small cell carcinoma.

Lung cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the bloodstream and go to other places in the body. In these distant places, the cancer cells cause secondary tumors to grow. The main sites to which lung cancer spreads are the adrenal gland, liver and lungs.

To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a node near the primary tumor and a pathologist looks at it through a microscope to see if cancer cells are present. Several kinds of imaging also can be performed to determine if the cancer has spread. These include MRI, bone scans and endoscopic ultrasound (EUS).

The FDA has approved several targeted therapies to treat patients with NSCLC. These include bevacizumab (Avastin), cetuximab (Erbitux), erlotinib (Tarceva), gefitnib (Iressa) and crizotinib (Xalkori). So far there are no FDA-approved targeted therapies for SCLC.

Despite significant improvements in the treatment of lung cancers, novel therapies and treatment strategies are needed.

Source: National Cancer Institute, 2012
Estimated new cases and deaths from lung cancer (non-small cell and small cell combined) in the United States in 2012:

New cases: 226,160
Deaths: 160,340

Lung cancer is the leading cause of cancer-related mortality in the United States. The 5-year relative survival rate from 1995 to 2001 for patients with lung cancer was 15.7%. The 5-year relative survival rate varies markedly depending on the stage at diagnosis, from 49% to 16% to 2% for patients with local, regional and distant stage disease, respectively.

NSCLC arises from the epithelial cells of the lung, from the central bronchi to the terminal alveoli. The histological type of NSCLC correlates with the site of origin, reflecting the variation in respiratory tract epithelium from the bronchi to the alveoli. Squamous cell carcinoma usually starts near a central bronchus while adenocarcinoma usually originates in peripheral lung tissue.

Tobacco smoking is the strongest risk factor for developing lung cancer, though it should be noted that the majority of patients diagnosed with lung cancer quit smoking years prior to diagnosis or were never-smokers (up to 15% of cases).

The identification of driver oncogene mutations in lung cancer has led to the development of targeted therapy that has vastly broadened treatment options and improved outcomes for subsets of patients with metastatic disease. It is now common practice to determine the genotype of a NSCLC patient early in the course of their diagnosis, to ensure that all possible treatment options are considered.

Source: National Cancer Institute, 2012
Expand Collapse ROS1  - General Description
CLICK IMAGE FOR MORE INFORMATION
ROS1 is a gene that provides the code for making a protein, a receptor tyrosine kinase (RTK), that may activate several signaling pathways involved in the growth and division (proliferation), specialization (differentiation) and survival of cells.

Changes in the ROS1 gene have been associated with non-small cell lung cancer (NSCLC) and a fast-growing type of central nervous system tumor, glioblastoma multiforme. These changes are due to rearrangements of the chromosome where the gene is located.

Source: Genetics Home Reference
ROS1 is a receptor tyrosine kinase (RTK) that activates several signaling pathways involved in proliferation, differentiation and survival of cells.

Changes in the ROS1 gene have been associated with non-small cell lung cancer (NSCLC) and glioblastoma multiforme. These changes are due to rearrangements of the chromosome where the gene is located.

Source: Genetics Home Reference
Expand Collapse ROS1  in Lung Cancer
ROS1 gene fusions generate a chimeric protein with strong proliferative activity. ROS1 inhibitors are in clinical development, and crizotinib has already shown significant activity (Shaw, ASCO 2013). Clinical trials with ROS1 inhibitors are currently underway.

Rearrangement involving the ROS1 gene with one of several known partner genes (including CD74 and SLC34A2) is present in 1-2% of lung adenocarcinomas. Compared with the ROS1-negative patients, those with ROS1 rearrangements are significantly younger and more likely to be never-smokers. ROS1 rearrangements are non-overlapping with other oncogenic mutations found in lung cancer (such as EGFR mutations, KRAS mutations, ALK and RET rearrangements).

ROS1 gene fusions generate a chimeric protein with strong proliferative activity. ROS1 inhibitors are in clinical development, and crizotinib has already shown significant activity (Shaw, ASCO 2013). Clinical trials with ROS1 inhibitors are currently underway.

Rearrangement involving the ROS1 gene with one of several known partner genes (including CD74 and SLC34A2) is present in 1-2% of lung adenocarcinomas. Compared with the ROS1-negative patients, those with ROS1 rearrangements are significantly younger and more likely to be never-smokers. ROS1 rearrangements are non-overlapping with other oncogenic mutations found in lung cancer (such as EGFR mutations, KRAS mutations, ALK and RET rearrangements).

PubMed ID's
22215748, 22919003, 22327623, 22215748
Expand Collapse No mutation selected
The mutation of a gene provides clinicians with a very detailed look at your cancer. Knowing this information could change the course of your care. To learn how you can find out more about genetic testing please visit http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.
Our Lung Cancer Team

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene
Trial Status: Showing Results: 1-10 of 59 Per Page:
123456Next »
Protocol # Title Location Status Match
NCT02279433 A First-in-human Study to Evaluate the Safety, Tolerability and Pharmacokinetics of DS-6051b A First-in-human Study to Evaluate the Safety, Tolerability and Pharmacokinetics of DS-6051b MGH Open DG
NCT02927340 A Study of Lorlatinib in Advanced ALK and ROS1 Rearranged Lung Cancer With CNS Metastasis in the Absence of Measurable Extracranial Lesions A Study of Lorlatinib in Advanced ALK and ROS1 Rearranged Lung Cancer With CNS Metastasis in the Absence of Measurable Extracranial Lesions MGH Open DG
NCT00585195 A Study Of Oral PF-02341066, A c-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer A Study Of Oral PF-02341066, A c-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer MGH Open DG
NCT02568267 Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) MGH Open DG
NCT02097810 Study of Oral RXDX-101 in Adult Patients With Locally Advanced or Metastatic Cancer Targeting NTRK1, NTRK2, NTRK3, ROS1, or ALK Molecular Alterations. Study of Oral RXDX-101 in Adult Patients With Locally Advanced or Metastatic Cancer Targeting NTRK1, NTRK2, NTRK3, ROS1, or ALK Molecular Alterations. MGH Open DG
NCT02584634 Study to Evaluate Safety, Efficacy, Pharmacokinetics And Pharmacodynamics Of Avelumab In Combination With Either Crizotinib Or PF-06463922 In Patients With NSCLC. (Javelin Lung 101) Study to Evaluate Safety, Efficacy, Pharmacokinetics And Pharmacodynamics Of Avelumab In Combination With Either Crizotinib Or PF-06463922 In Patients With NSCLC. (Javelin Lung 101) MGH Open DG
NCT02335918 A Dose Escalation and Cohort Expansion Study of Anti-CD27 (Varlilumab) and Anti-PD-1 (Nivolumab) in Advanced Refractory Solid Tumors A Dose Escalation and Cohort Expansion Study of Anti-CD27 (Varlilumab) and Anti-PD-1 (Nivolumab) in Advanced Refractory Solid Tumors MGH Open D
NCT02052778 A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities MGH Open D
NCT02637531 A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IPI-549 A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IPI-549 MGH Open D
NCT02715284 A Phase 1 Dose Escalation and Cohort Expansion Study of TSR-042, an Anti-PD-1 Monoclonal Antibody, in Patients With Advanced Solid Tumors A Phase 1 Dose Escalation and Cohort Expansion Study of TSR-042, an Anti-PD-1 Monoclonal Antibody, in Patients With Advanced Solid Tumors MGH Open D
Trial Status: Showing Results: 1-10 of 59 Per Page:
123456Next »
Our Lung Cancer Team

Share with your Physican

Print information for your Physician.

Print information