Head & Neck Cancers, TP53

View:
Expand Collapse Head & Neck Cancers  - General Description This year about 52,000 people in the U.S. will be told by a doctor that they have cancer of the head and neck. Approximately 70% of these new patients will be men. However, about 265,000 Americans remain alive today after having been diagnosed with head & neck cancer.

Head and neck cancers develop inside the mouth (in the oral cavity), nose (nasal cavity), or the tube (pharynx) that runs from the back of the nose to the top of the windpipe (trachea) and the top of the tube that goes to the stomach (esophagus). Cancers that begins in the lips, salivary glands, throat or voice box (larynx) are also classified as head and neck cancer. However, cancers of the esophagus, eye, brain, and thyroid gland usually aren't regarded as head and neck cancers, and neither are cancers of the skin, muscles, or bones of the head and neck. Head and neck cancers usually begin in squamous cells and therefore are called squamous cell carcinomas. The FDA has approved the targeted therapy cetuximab (Erbitux) for treatment of patients with squamous cell carcinoma of the head and neck.

Head and neck cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the bloodstream and go to other places in the body. In these distant places, the cancer cells cause secondary tumors to grow. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a node near the primary tumor and a pathologist looks at it through a microscope to see if cancer cells are present. Several kinds of imaging can also be performed to determine if the cancer has spread. These include MRI and CT scans.

Despite significant improvements in the treatment of head & neck cancers, novel therapies and treatment strategies are needed.

Source: National Cancer Institute, 2012
An estimated 644,000 new cases of head and neck cancer are diagnosed each year worldwide, posing the sixth leading cause of cancer death. The American Cancer Society projected 39,400 new head and neck cancer diagnoses and 7,900 cancer deaths in the U.S. in 2009. In Europe, the projected incidence for 2008 was 132,300 and the mortality was 62,800. The estimated annual incidence of head and neck cancers is 2-4-fold higher among men than women.

More than 95% of head and neck cancers are of squamous cell histology (SCCHN) and originate in the mucosal lining of the upper aerodigestive tract. Anatomic sites include the lip/oral cavity, nasopharynx, oropharynx, hypopharynx and larynx. Common risk factors include tobacco use (smoking and/or chewing) and alcohol consumption, with a suggested synergistic effect. Less common risk factors include chewing of betel nuts (a common practice in some parts of Asia) and occupational exposures. Infection with the oncogenic human papillomavirus (HPV) has been identified as a distinct and rising risk factor, particularly among patients with squamous cell carcinoma of the oropharynx, specifically tonsils and the base of tongue. The incidence of SCCHN has increased steadily during the last several decades, whereas the incidence of tobacco-associated SCCHN has decreased, to the point where the incidence of HPV-associated and non-HPV-associated cancers is nearly equivalent. HPV status has been shown to strongly predict outcomes in patients with locally or regionally advanced oropharynx squamous cell carcinoma, but the prognostic impact of HPV in recurrent/metastatic SCCHN is currently less well understood.

Molecular hallmarks of SCCHN that have been identified as key drivers over the past decade include gene mutations in TP53, CDKN2A, PIK3CA, PTEN and HRAS. Recent investigations using high-throughput gene sequencing also found mutations in other cell differentiation-related genes, such as NOTCH1, NOTCH2, NOTCH3 and TP63, suggesting that deregulation of the terminal differentiation program is critical for squamous cancer development.

The epidermal growth factor receptor (EGFR) and its downstream molecular pathways are of particular importance in SCCHN. EGFR is overexpressed in up to 90% of all SCCHN. High expression levels of EGFR and transforming growth factor (TGF, a ligand of EGFR), as well as EGFR gene amplification, has been associated with increased resistance to treatment and poorer clinical outcome, including decreased disease-free and overall survival.

Therapeutic options and treatment decisions at first diagnosis are dependent on disease stage. For early-stage and locally advanced disease (the majority of new
cases), therapy is tailored to the primary site of disease, feasibility of organ preservation and prognosis and functional outcomes following therapy. Despite aggressive treatment, only 35% to 55% of patients who present with locally advanced SCCHN remain alive and free of disease 3 years after standard curative treatment. Between 30-40% of patients develop loco-regional recurrences, with distant metastases occurring in 20-30% of cases. The majority of recurrences appear within 2 years of initial treatment. An additional 10-20% of patients have evidence of distant metastases at the time of first diagnosis.

For patients with recurrent/metastatic SCCHN who are considered incurable with surgery or radiotherapy, first-line palliative treatment options include platinum agents, taxanes, methotrexate, 5-fluorouracil and cetuximab. Even with combination regimens, objective radiographic responses are achieved in fewer than 40% of patients in most large studies. Patients with disease progression on platinum-based therapy have limited treatment options and a poor prognosis. In these patients, overall response to second-line cytotoxic therapy has been 3%. Poor survival at this stage is related to the development of metastases and poor local disease control.

Source: National Cancer Institute, 2012
This year about 52,000 people in the U.S. will be told by a doctor that they have cancer of the head and neck. Approximately 70% of these new patients will be men. However, about 265,000 Americans remain alive today after having been diagnosed with head & neck cancer.

Head and neck cancers develop inside the mouth (in the oral cavity), nose (nasal cavity), or the tube (pharynx) that runs from the back of the nose to the top of the windpipe (trachea) and the top of the tube that goes to the stomach (esophagus). Cancers that begins in the lips, salivary glands, throat or voice box (larynx) are also classified as head and neck cancer. However, cancers of the esophagus, eye, brain, and thyroid gland usually aren't regarded as head and neck cancers, and neither are cancers of the skin, muscles, or bones of the head and neck. Head and neck cancers usually begin in squamous cells and therefore are called squamous cell carcinomas. The FDA has approved the targeted therapy cetuximab (Erbitux) for treatment of patients with squamous cell carcinoma of the head and neck.

Head and neck cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the bloodstream and go to other places in the body. In these distant places, the cancer cells cause secondary tumors to grow. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a node near the primary tumor and a pathologist looks at it through a microscope to see if cancer cells are present. Several kinds of imaging can also be performed to determine if the cancer has spread. These include MRI and CT scans.

Despite significant improvements in the treatment of head & neck cancers, novel therapies and treatment strategies are needed.

Source: National Cancer Institute, 2012
An estimated 644,000 new cases of head and neck cancer are diagnosed each year worldwide, posing the sixth leading cause of cancer death. The American Cancer Society projected 39,400 new head and neck cancer diagnoses and 7,900 cancer deaths in the U.S. in 2009. In Europe, the projected incidence for 2008 was 132,300 and the mortality was 62,800. The estimated annual incidence of head and neck cancers is 2-4-fold higher among men than women.

More than 95% of head and neck cancers are of squamous cell histology (SCCHN) and originate in the mucosal lining of the upper aerodigestive tract. Anatomic sites include the lip/oral cavity, nasopharynx, oropharynx, hypopharynx and larynx. Common risk factors include tobacco use (smoking and/or chewing) and alcohol consumption, with a suggested synergistic effect. Less common risk factors include chewing of betel nuts (a common practice in some parts of Asia) and occupational exposures. Infection with the oncogenic human papillomavirus (HPV) has been identified as a distinct and rising risk factor, particularly among patients with squamous cell carcinoma of the oropharynx, specifically tonsils and the base of tongue. The incidence of SCCHN has increased steadily during the last several decades, whereas the incidence of tobacco-associated SCCHN has decreased, to the point where the incidence of HPV-associated and non-HPV-associated cancers is nearly equivalent. HPV status has been shown to strongly predict outcomes in patients with locally or regionally advanced oropharynx squamous cell carcinoma, but the prognostic impact of HPV in recurrent/metastatic SCCHN is currently less well understood.

Molecular hallmarks of SCCHN that have been identified as key drivers over the past decade include gene mutations in TP53, CDKN2A, PIK3CA, PTEN and HRAS. Recent investigations using high-throughput gene sequencing also found mutations in other cell differentiation-related genes, such as NOTCH1, NOTCH2, NOTCH3 and TP63, suggesting that deregulation of the terminal differentiation program is critical for squamous cancer development.

The epidermal growth factor receptor (EGFR) and its downstream molecular pathways are of particular importance in SCCHN. EGFR is overexpressed in up to 90% of all SCCHN. High expression levels of EGFR and transforming growth factor (TGF, a ligand of EGFR), as well as EGFR gene amplification, has been associated with increased resistance to treatment and poorer clinical outcome, including decreased disease-free and overall survival.

Therapeutic options and treatment decisions at first diagnosis are dependent on disease stage. For early-stage and locally advanced disease (the majority of new
cases), therapy is tailored to the primary site of disease, feasibility of organ preservation and prognosis and functional outcomes following therapy. Despite aggressive treatment, only 35% to 55% of patients who present with locally advanced SCCHN remain alive and free of disease 3 years after standard curative treatment. Between 30-40% of patients develop loco-regional recurrences, with distant metastases occurring in 20-30% of cases. The majority of recurrences appear within 2 years of initial treatment. An additional 10-20% of patients have evidence of distant metastases at the time of first diagnosis.

For patients with recurrent/metastatic SCCHN who are considered incurable with surgery or radiotherapy, first-line palliative treatment options include platinum agents, taxanes, methotrexate, 5-fluorouracil and cetuximab. Even with combination regimens, objective radiographic responses are achieved in fewer than 40% of patients in most large studies. Patients with disease progression on platinum-based therapy have limited treatment options and a poor prognosis. In these patients, overall response to second-line cytotoxic therapy has been 3%. Poor survival at this stage is related to the development of metastases and poor local disease control.

Source: National Cancer Institute, 2012
Expand Collapse TP53  - General Description
CLICK IMAGE FOR MORE INFORMATION
The p53 (TP53) gene produces a protein, P53 which has many complex functions within the cell. It has been called the “guardian of the genome” for reasons that have to do with these complex functions. Normal, non-cancerous cells have tightly regulated pathways that control cell growth, mediating cessation of growth or even cell death when circumstances warrant it. P53 is at the center of these pathways, acting as a “tumor suppressor” in responding to circumstances in the cell that require a cessation of growth. Perhaps for this reason, P53 is one of the most commonly mutated genes across all cancer types.

P53 itself regulates the expression of several genes that are involved in growth arrest or “cell cycle arrest”. Growth arrest is important for stopping the cell from normal growth and cell division so that if, for instance, there has been damage to the DNA from UV irradiation or some other insult causing DNA damage, the cessation of the cell cycle allows DNA repair to take place before the cell resumes growth. If the damage to the DNA is too extensive to repair, or if other factors such as oncogenic stress impact the cell, P53 then has roles in other processes that are part of the cell’s repertoire of responses. These include processes such as apoptosis (programmed cell death), senescence (irreversible cell cycle arrest), autophagy (regulated destruction of selected proteins within the cell, leading to cell death), and some important metabolic changes in the cell (see graphic above, adapted with permission).

P53 is itself acted upon by proteins in the cell that detect DNA damage or oncogenic stress (see graphic depicting P53 at the center of a number of cellular responses). In the case of DNA damage to the cell, P53 is acted upon by a protein called ATM and another designated CHK2 (see glossary for more information). These proteins activate P53 to regulate the changes that will cause growth arrest. Interestingly, these two genes themselves are found to be mutated and have altered function in certain cancers. The fact that both P53 and the genes that trigger P53’s response and initiation of growth arrest are mutated in some cancers highlights the importance of P53 to normal cell growth. P53 is found to be mutated in over half of cancers studied, including ovarian cancer, colon and esophageal cancer, and many other types of cancer. Because p53 plays so many complex roles in the cell, we do not depict it in a simple graphic as we have with other proteins on this web site in which genetic alterations have been found in specific tumors that lead to dysregulation of these proteins. Rather, P53 as a negative regulator of cell growth under important circumstances plays this role at the center of a complex network of pathways within the cell. Many of the proteins involved in the pathways that regulate P53 and its responses are also found to be genetically altered in some cancers.

As we have seen, the P53 protein has many functions in the cell, and because of these many roles, its location in the nucleus or cytoplasm varies, depending on the function and when it exerts its effect during the cell cycle. One important protein that regulates P53 is called HDM2/MDM2, depicted in the graphic above. The HDM2/MDM2 protein contains a p53 binding domain, and once bound to p53, it inhibits the activation of the P53 protein, and thereby prevents P53 from regulating growth arrest, even when there is damage to the DNA. Some cancers have been found to overexpress HDM2/MDM2, meaning there is an excess of the protein which binds to P53, preventing it from exerting its important role in regulating growth arrest. Cell division that occurs despite damage to the DNA can lead to cancer. Interestingly, those cancers that have been found to over-express HDM2/MDM2 typically are not found to have p53 mutations. This provides scientists with evidence that by whatever means, either through increasing the amount of the P53 inhibitor HDM2/MDM2, or, through mutations in P53 that prevent the normal activities of the protein, the normal function of P53 is important in preventing cancer. MDM2 was named after its discovery in studies on laboratory mice. The human version of the gene is designated HumanDM2, or HDM2. Genetic alterations leading to over-expression of MDM2 are observed most commonly in sarcomas, but have also been observed in endometrial cancer, colon cancer, and stomach cancer.

Source: Molecular Genetics of Cancer, Second Edition
Chapter No. 2, Section No. 12
Leif W. Ellisen, MD, PhD
The p53 (TP53) gene produces a protein, P53 which has many complex functions within the cell. It has been called the “guardian of the genome” for reasons that have to do with these complex functions. Normal, non-cancerous cells have tightly regulated pathways that control cell growth, mediating cessation of growth or even cell death when circumstances warrant it. P53 is at the center of these pathways, acting as a “tumor suppressor” in responding to circumstances in the cell that require a cessation of growth. Perhaps for this reason, P53 is one of the most commonly mutated genes across all cancer types.

P53 itself regulates the expression of several genes that are involved in growth arrest or “cell cycle arrest”. Growth arrest is important for stopping the cell from normal growth and cell division so that if, for instance, there has been damage to the DNA from UV irradiation or some other insult causing DNA damage, the cessation of the cell cycle allows DNA repair to take place before the cell resumes growth. If the damage to the DNA is too extensive to repair, or if other factors such as oncogenic stress impact the cell, P53 then has roles in other processes that are part of the cell’s repertoire of responses. These include processes such as apoptosis (programmed cell death), senescence (irreversible cell cycle arrest), autophagy (regulated destruction of selected proteins within the cell, leading to cell death), and some important metabolic changes in the cell (see graphic above, adapted with permission).

P53 is itself acted upon by proteins in the cell that detect DNA damage or oncogenic stress (see graphic depicting P53 at the center of a number of cellular responses). In the case of DNA damage to the cell, P53 is acted upon by a protein called ATM and another designated CHK2 (see glossary for more information). These proteins activate P53 to regulate the changes that will cause growth arrest. Interestingly, these two genes themselves are found to be mutated and have altered function in certain cancers. The fact that both P53 and the genes that trigger P53’s response and initiation of growth arrest are mutated in some cancers highlights the importance of P53 to normal cell growth. P53 is found to be mutated in over half of cancers studied, including ovarian cancer, colon and esophageal cancer, and many other types of cancer. Because p53 plays so many complex roles in the cell, we do not depict it in a simple graphic as we have with other proteins on this web site in which genetic alterations have been found in specific tumors that lead to dysregulation of these proteins. Rather, P53 as a negative regulator of cell growth under important circumstances plays this role at the center of a complex network of pathways within the cell. Many of the proteins involved in the pathways that regulate P53 and its responses are also found to be genetically altered in some cancers.

As we have seen, the P53 protein has many functions in the cell, and because of these many roles, its location in the nucleus or cytoplasm varies, depending on the function and when it exerts its effect during the cell cycle. One important protein that regulates P53 is called HDM2/MDM2, depicted in the graphic above. The HDM2/MDM2 protein contains a p53 binding domain, and once bound to p53, it inhibits the activation of the P53 protein, and thereby prevents P53 from regulating growth arrest, even when there is damage to the DNA. Some cancers have been found to overexpress HDM2/MDM2, meaning there is an excess of the protein which binds to P53, preventing it from exerting its important role in regulating growth arrest. Cell division that occurs despite damage to the DNA can lead to cancer. Interestingly, those cancers that have been found to over-express HDM2/MDM2 typically are not found to have p53 mutations. This provides scientists with evidence that by whatever means, either through increasing the amount of the P53 inhibitor HDM2/MDM2, or, through mutations in P53 that prevent the normal activities of the protein, the normal function of P53 is important in preventing cancer. MDM2 was named after its discovery in studies on laboratory mice. The human version of the gene is designated HumanDM2, or HDM2. Genetic alterations leading to over-expression of MDM2 are observed most commonly in sarcomas, but have also been observed in endometrial cancer, colon cancer, and stomach cancer.

Source: Molecular Genetics of Cancer, Second Edition
Chapter No. 2, Section No. 12
Leif W. Ellisen, MD, PhD
Expand Collapse TP53  in Head & Neck Cancers
Patients with cancers of the head and neck that carry TP53 inactivating mutations are more likely to fail standard chemotherapy and radiotherapy treatment when compared to tumors with intact TP53 (wild-type), lending to a higher risk of tumor recurrence.

In a large and prospective multi-center study, inactivating TP53 mutations were found in approximately 50% of cancers of the head and neck and were associated with a significant reduction in survival, when compared to patients that lacked TP53 mutations in their tumors.

Patients with cancers of the head and neck that carry TP53 inactivating mutations are more likely to fail standard chemotherapy and radiotherapy treatment when compared to tumors with intact TP53 (wild-type), lending to a higher risk of tumor recurrence.

In a large and prospective multi-center study, inactivating TP53 mutations were found in approximately 50% of cancers of the head and neck and were associated with a significant reduction in survival, when compared to patients that lacked TP53 mutations in their tumors.

PubMed ID's
8901856, 11325447, 22090360, 15611505, 20048189, 19941080, 19885698, 18094376, 21467160
Expand Collapse No mutation selected
The mutation of a gene provides clinicians with a very detailed look at your cancer. Knowing this information could change the course of your care. To learn how you can find out more about genetic testing please visit http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.
Our Head & Neck Cancer Team

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene
Trial Status: Showing Results: 1-10 of 18 Per Page:
12Next »
Protocol # Title Location Status Match
NCT02099058 A Phase 1/1b Study With ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Cancer Tumors A Phase 1/1b Study With ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Cancer Tumors MGH Open D
NCT02365662 A Study Evaluating Safety and Pharmacokinetics of ABBV-221 in Subjects With Advanced Solid Tumor Types Likely to Exhibit Elevated Levels of Epidermal Growth Factor Receptor A Study Evaluating Safety and Pharmacokinetics of ABBV-221 in Subjects With Advanced Solid Tumor Types Likely to Exhibit Elevated Levels of Epidermal Growth Factor Receptor MGH Open D
NCT01714739 A Study of an Anti-KIR Antibody in Combination With an Anti-PD1 Antibody in Patients With Advanced Solid Tumors A Study of an Anti-KIR Antibody in Combination With an Anti-PD1 Antibody in Patients With Advanced Solid Tumors MGH Open D
NCT02467361 A Study of BBI608 Administered in Combination With Immune Checkpoint Inhibitors in Adult Patients With Advanced Cancers A Study of BBI608 Administered in Combination With Immune Checkpoint Inhibitors in Adult Patients With Advanced Cancers MGH Open D
NCT02471846 A Study of GDC-0919 and Atezolizumab Combination Treatment in Participants With Locally Advanced or Metastatic Solid Tumors A Study of GDC-0919 and Atezolizumab Combination Treatment in Participants With Locally Advanced or Metastatic Solid Tumors MGH Open D
NCT02082210 A Study of LY2875358 in Combination With Ramucirumab (LY3009806) in Participants With Advanced Cancer A Study of LY2875358 in Combination With Ramucirumab (LY3009806) in Participants With Advanced Cancer MGH Open D
NCT00585195 A Study Of Oral PF-02341066, A c-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer A Study Of Oral PF-02341066, A c-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer MGH Open D
NCT01953926 An Open-label, Phase 2 Study of Neratinib in Patients With Solid Tumors With Somatic Human Epidermal Growth Factor Receptor (EGFR, HER2, HER3) Mutations or EGFR Gene Amplification An Open-label, Phase 2 Study of Neratinib in Patients With Solid Tumors With Somatic Human Epidermal Growth Factor Receptor (EGFR, HER2, HER3) Mutations or EGFR Gene Amplification MGH Open D
NCT02568267 Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) MGH Open D
NCT01948297 Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations MGH Open D
Trial Status: Showing Results: 1-10 of 18 Per Page:
12Next »
Our Head & Neck Cancer Team

Share with your Physican

Print information for your Physician.

Print information