Breast Cancer, FGFR1

View:
Expand Collapse Breast Cancer  - General Description Breast cancer is a malignant tumor that usually forms in the glands that make milk (lobules) and the tubes (ducts) that carry milk to the nipple. This year about 231,8400 women (and 2,000 men) in the U.S. will be told by a doctor that they have breast cancer. Half of these people will be at least 61 years old. However, more than 10 times as many women, about 2.7 million, remain alive today after having been diagnosed with breast cancer.

Breast cancer is not one disease and is currently classified into 3 subtypes based on the receptors present on the surface of the cancer cell. If the tumor is positive for estrogen and/or progesterone receptors, it is called "hormone receptor breast cancer". In that case, drugs that block the hormones, such as tamoxifen or aromatase inhibitors, might work best initially. If the tumor is positive for another type of receptor, called HER2 (or ERBB2), it is called "HER2 positive breast cancer", and certain targeted therapies that block HER2, such as the medications trastuzumab (Herceptin), pertuzumab (perjeta), T-DM1 (Kadcyla), and lapatanib (Tykerb) might work best and are recommended by the FDA. If the tumor is negative for HER2, estrogen, and progesterone receptors, it is called "triple negative breast cancer".

Over time, breast cancer (and other tumors) can spread from the site where it started (the primary tumor) in 3 ways. First, breast cancer cells can invade the normal tissue surrounding the tumor. Second, breast cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the breast cancer cells can get into the blood stream and travel to other places in the body. In these distant places, the breast cancer cells cause secondary (metastatic) tumors to grow. The main sites where breast cancer spreads are the lungs, liver and bones. There is a lot of ongoing research to identify other receptors and mutations that are actionable through treatment using appropriate new targeted therapies that could be developed against the cancer.

Source: National Cancer Institute, 2015
Breast cancer is the most common non-cutaneous cancer among women in the United States. This year about 231,840 women (and 2,000 men) in the U.S. will be told by a doctor that they have breast cancer. Half of these people will be at least 61 years old. However, more than 10 times as many women, about 2.7 million, remain alive today after having been diagnosed with breast cancer.

Germline mutations in either the BRCA1 or BRCA2 gene confer an increased risk of breast and/or ovarian cancer. In addition, mutation carriers may be at increased risk of other primary cancers. Genetic testing is available to detect mutations in members of high-risk families. Such individuals should first be referred for counseling. Breast cancer is commonly treated by various combinations of surgery, radiation therapy, chemotherapy and hormone therapy.

Over the past years, significant major strides in understanding the biology of breast cancer have translated into actionable targeted therapies. For metastatic hormone receptor positive breast cancer, FDA approved therapies include tamoxifen, a selective estrogen modulator, aromatase inhibitors including exemestane, letrozole, and anastrozole, fulvestrant, a selective estrogen receptor blocker, and more recently everoliumus, a mTOR inhibitor, in combination with exemestane.

Despite significant improvements in the treatment of breast tumors, novel therapies and treatment strategies are needed. There are a number of novel therapies in development tailored to specific somatic mutations in the tumor.
Source: National Cancer Institute, 2014
Breast cancer is a malignant tumor that usually forms in the glands that make milk (lobules) and the tubes (ducts) that carry milk to the nipple. This year about 231,8400 women (and 2,000 men) in the U.S. will be told by a doctor that they have breast cancer. Half of these people will be at least 61 years old. However, more than 10 times as many women, about 2.7 million, remain alive today after having been diagnosed with breast cancer.

Breast cancer is not one disease and is currently classified into 3 subtypes based on the receptors present on the surface of the cancer cell. If the tumor is positive for estrogen and/or progesterone receptors, it is called "hormone receptor breast cancer". In that case, drugs that block the hormones, such as tamoxifen or aromatase inhibitors, might work best initially. If the tumor is positive for another type of receptor, called HER2 (or ERBB2), it is called "HER2 positive breast cancer", and certain targeted therapies that block HER2, such as the medications trastuzumab (Herceptin), pertuzumab (perjeta), T-DM1 (Kadcyla), and lapatanib (Tykerb) might work best and are recommended by the FDA. If the tumor is negative for HER2, estrogen, and progesterone receptors, it is called "triple negative breast cancer".

Over time, breast cancer (and other tumors) can spread from the site where it started (the primary tumor) in 3 ways. First, breast cancer cells can invade the normal tissue surrounding the tumor. Second, breast cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the breast cancer cells can get into the blood stream and travel to other places in the body. In these distant places, the breast cancer cells cause secondary (metastatic) tumors to grow. The main sites where breast cancer spreads are the lungs, liver and bones. There is a lot of ongoing research to identify other receptors and mutations that are actionable through treatment using appropriate new targeted therapies that could be developed against the cancer.

Source: National Cancer Institute, 2015
Breast cancer is the most common non-cutaneous cancer among women in the United States. This year about 231,840 women (and 2,000 men) in the U.S. will be told by a doctor that they have breast cancer. Half of these people will be at least 61 years old. However, more than 10 times as many women, about 2.7 million, remain alive today after having been diagnosed with breast cancer.

Germline mutations in either the BRCA1 or BRCA2 gene confer an increased risk of breast and/or ovarian cancer. In addition, mutation carriers may be at increased risk of other primary cancers. Genetic testing is available to detect mutations in members of high-risk families. Such individuals should first be referred for counseling. Breast cancer is commonly treated by various combinations of surgery, radiation therapy, chemotherapy and hormone therapy.

Over the past years, significant major strides in understanding the biology of breast cancer have translated into actionable targeted therapies. For metastatic hormone receptor positive breast cancer, FDA approved therapies include tamoxifen, a selective estrogen modulator, aromatase inhibitors including exemestane, letrozole, and anastrozole, fulvestrant, a selective estrogen receptor blocker, and more recently everoliumus, a mTOR inhibitor, in combination with exemestane.

Despite significant improvements in the treatment of breast tumors, novel therapies and treatment strategies are needed. There are a number of novel therapies in development tailored to specific somatic mutations in the tumor.
Source: National Cancer Institute, 2014
Expand Collapse FGFR1  - General Description
CLICK IMAGE FOR MORE INFORMATION
FGFR1 is a gene that provides the code for making a cell surface protein called fibroblast growth factor receptor 1 (FGFR1). When bound to specific growth factors (proteins that stimulate cell growth and division), it activate a signaling system inside the cell that ultimately controls diverse functions such as the development of the nervous system and regulation of large bone growth.

In certain types of stomach and prostate cancers, there is an excess of FGFR1 produced in the cancer cells (overexpression). The excessive signaling that results from the extra receptors may make it easier for the cancer cells to grow, divide, and move. Unusual expression of the FGFR1 gene is also found in certain pancreatic, esophageal, ovarian, testicular, breast and head and neck cancers.

Source: Genetics Home Reference
FGFR1 is a gene that provides the code for making a protein called fibroblast growth factor receptor 1. This receptor is located on the surface of cells. When certain growth factors (proteins that stimulate cell growth and division) come into contact with (bind to) this receptor, they activate a signaling system within the cell that tells it to undergo certain changes. In its normal role, the FGFR1 protein is believed to help the nervous system develop, and it also may help regulate the growth of long bones.

In certain types of stomach and prostate cancers, the FGFR1 gene makes too make of the receptor (overexpression). The excessive signaling that results from the extra receptors may make it easier for the cancer cells to grow, divide and move. Unusual expression of the FGFR1 gene is also found in certain pancreatic, esophageal, ovarian, testicular, breast and head and neck cancers.

Source: Genetics Home Reference
Expand Collapse FGFR1  in Breast Cancer
Preclinical testing in cancer cell lines suggest that FGFR1 gene amplification can be an important mechanism of tumor progression that may be effectively targeted with FGFR inhibitors. This has led to the development of clinical trials evaluating FGFR inhibitors in FGFR-amplified breast cancer, which are currently underway.



Amplification (or extra copies) of the FGFR1 gene have been seen in 10% of hormone receptor-positive breast cancer. This has been associated with worse prognosis and resistance to endocrine therapies.


Preclinical testing in cancer cell lines suggest that FGFR1 gene amplification can be an important mechanism of tumor progression that may be effectively targeted with FGFR inhibitors. This has led to the development of clinical trials evaluating FGFR inhibitors in FGFR-amplified breast cancer, which are currently underway.



Amplification (or extra copies) of the FGFR1 gene have been seen in 10% of hormone receptor-positive breast cancer. This has been associated with worse prognosis and resistance to endocrine therapies.


PubMed ID's
20179196, 17397528, 20024612
Expand Collapse No mutation selected
The mutation of a gene provides clinicians with a very detailed look at your cancer. Knowing this information could change the course of your care. To learn how you can find out more about genetic testing please visit http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.
Our Breast Cancer Team

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene
Trial Status: Showing Results: 1-10 of 38 Per Page:
1234Next »
Protocol # Title Location Status Match
NCT02052778 A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities MGH Open DG
NCT01948297 Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations MGH Open DG
NCT01296555 A Dose Escalation Study Evaluating the Safety and Tolerability of GDC-0032 in Participants With Locally Advanced or Metastatic Solid Tumors or Non-Hodgkin's Lymphoma (NHL) and in Combination With Endocrine Therapy in Locally Advanced or Metastatic Hormone Receptor-Positive Breast Cancer A Dose Escalation Study Evaluating the Safety and Tolerability of GDC-0032 in Participants With Locally Advanced or Metastatic Solid Tumors or Non-Hodgkin's Lymphoma (NHL) and in Combination With Endocrine Therapy in Locally Advanced or Metastatic Hormone Receptor-Positive Breast Cancer MGH Open D
NCT01862081 A Dose-escalation Study to Assess the Safety, Tolerability, and Pharmacokinetics of GDC-0032 in Combination With Docetaxel or With Paclitaxel in Patients With HER2-negative Locally Recurrent or Metastatic Breast Cancer or Non-small Cell Lung Cancer A Dose-escalation Study to Assess the Safety, Tolerability, and Pharmacokinetics of GDC-0032 in Combination With Docetaxel or With Paclitaxel in Patients With HER2-negative Locally Recurrent or Metastatic Breast Cancer or Non-small Cell Lung Cancer MGH Open D
NCT02099058 A Phase 1/1b Study With ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Cancer Tumors A Phase 1/1b Study With ABBV-399, an Antibody Drug Conjugate, in Subjects With Advanced Solid Cancer Tumors MGH Open D
NCT02338349 A Phase I, Multicenter, Open-Label, Two-Part, Dose-escalation Study of RAD1901 in Postmenopausal Women With Advanced Estrogen Receptor Positive and HER2-Negative Breast Cancer A Phase I, Multicenter, Open-Label, Two-Part, Dose-escalation Study of RAD1901 in Postmenopausal Women With Advanced Estrogen Receptor Positive and HER2-Negative Breast Cancer MGH Open D
NCT02219724 A Phase I, Open-Label Study of MOXR0916 in Patients With Locally Advanced or Metastatic Solid Tumors A Phase I, Open-Label Study of MOXR0916 in Patients With Locally Advanced or Metastatic Solid Tumors MGH Open D
NCT01525589 A Phase II Clinical Trial of PM01183 in BRCA 1/2-Associated or Unselected Metastatic Breast Cancer A Phase II Clinical Trial of PM01183 in BRCA 1/2-Associated or Unselected Metastatic Breast Cancer MGH Open D
NCT02365662 A Study Evaluating Safety and Pharmacokinetics of ABBV-221 in Subjects With Advanced Solid Tumor Types Likely to Exhibit Elevated Levels of Epidermal Growth Factor Receptor A Study Evaluating Safety and Pharmacokinetics of ABBV-221 in Subjects With Advanced Solid Tumor Types Likely to Exhibit Elevated Levels of Epidermal Growth Factor Receptor MGH Open D
NCT02467361 A Study of BBI608 Administered in Combination With Immune Checkpoint Inhibitors in Adult Patients With Advanced Cancers A Study of BBI608 Administered in Combination With Immune Checkpoint Inhibitors in Adult Patients With Advanced Cancers MGH Open D
Trial Status: Showing Results: 1-10 of 38 Per Page:
1234Next »
Our Breast Cancer Team

Share with your Physican

Print information for your Physician.

Print information