Bone and Soft Tissue Sarcoma, BRAF, V600R (c.1798_1799GT>AG)

View:
Expand Collapse Bone and Soft Tissue Sarcoma  - General Description This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
Expand Collapse BRAF  - General Description
CLICK IMAGE FOR MORE INFORMATION
The BRAF gene encodes a serine/threonine kinase that activates the growth-promoting MAP kinase signaling cascade. BRAF is commonly activated by somatic point mutations in human cancers, most frequently by mutations located within the kinase domain at amino acid positions G466, G469, L597 and V600.

In regards to treatment, the Food and Drug Administration (FDA) approved the BRAF inhibitor, vemurafenib, for the treatment of unresectable or metastatic melanoma patients harboring specifically the BRAF V600E mutation, as detected by an FDA-approved test. In addition, there are a growing number of targeted agents that are being evaluated for the treatment of various BRAF-mutant advanced cancers, including other RAF kinase inhibitors and/or MEK inhibitors. Recently, the combination of the BRAF inhibitor dabrafenib with the MEK inhibitor trametinib was approved by FDA for the treatment of patients with BRAF V600E or V600K mutations.

Tumor mutation profiling performed clinically at the MGH Cancer Center has identified the highest incidence of BRAF mutations in thyroid cancer (30-40%), melanoma (20-30%) and colon cancer (10-15%).

To read more about the various BRAF based trials ongoing at the MGH Cancer Center, click on the "disease-gene-mutation" tab on the web page, and select relevant information. Current trials will appear as a ist under the posted information.


Source: Genetics Home Reference
The BRAF gene encodes a serine/threonine kinase that activates the growth-promoting MAP kinase signaling cascade. BRAF is commonly activated by somatic point mutations in human cancers, most frequently by mutations located within the kinase domain at amino acid positions G466, G469, L597 and V600.

In regards to treatment, the Food and Drug Administration (FDA) approved the BRAF inhibitor, vemurafenib, for the treatment of unresectable or metastatic melanoma patients harboring specifically the BRAF V600E mutation, as detected by an FDA-approved test. In addition, there are a growing number of targeted agents that are being evaluated for the treatment of various BRAF-mutant advanced cancers, including other RAF kinase inhibitors and/or MEK inhibitors. Recently, the combination of the BRAF inhibitor dabrafenib with the MEK inhibitor trametinib was approved by FDA for the treatment of patients with BRAF V600E or V600K mutations.

Tumor mutation profiling performed clinically at the MGH Cancer Center has identified the highest incidence of BRAF mutations in thyroid cancer (30-40%), melanoma (20-30%) and colon cancer (10-15%).

To read more about the various BRAF based trials ongoing at the MGH Cancer Center, click on the "disease-gene-mutation" tab on the web page, and select relevant information. Current trials will appear as a ist under the posted information.

Source: Genetics Home Reference
PubMed ID's
12068308, 15947100, 20401974, 20425073, 21606968
Expand Collapse V600R (c.1798_1799GT>AG)  in BRAF
The BRAF V600R mutation arises from a double nucleotide change (c.1798_1799GT>AG) and results in an amino acid substitution of the valine (V) at position 600 by an arginine (R).
The BRAF V600R mutation arises from a double nucleotide change (c.1798_1799GT>AG) and results in an amino acid substitution of the valine (V) at position 600 by an arginine (R).

BRAF mutations are present in 5-15% of gastrointestinal stromal tumors that do not carry mutations in KIT or PGFRA.

Clear rationale for the clinical use of BRAF inhibitors is currently limited to melanoma, where the presence of a BRAF V600E mutation directs the FDA-approved use of vemurafenib for the treatment of unresectable or metastatic melanoma patients. However, a phase 1 clinical trial evaluating the BRAF inhibitor dabrafenib demonstrated therapeutic response in a single BRAF-mutant GIST patient. Treatment of this patient with dabarafenib resulted in a 20% decrease in tumor mass by 24 weeks of treatment, which was durable for 8 months before the onset of tumor progression.

BRAF mutations are present in 5-15% of gastrointestinal stromal tumors that do not carry mutations in KIT or PGFRA.

Clear rationale for the clinical use of BRAF inhibitors is currently limited to melanoma, where the presence of a BRAF V600E mutation directs the FDA-approved use of vemurafenib for the treatment of unresectable or metastatic melanoma patients. However, a phase 1 clinical trial evaluating the BRAF inhibitor dabrafenib demonstrated therapeutic response in a single BRAF-mutant GIST patient. Treatment of this patient with dabarafenib resulted in a 20% decrease in tumor mass by 24 weeks of treatment, which was durable for 8 months before the onset of tumor progression.

PubMed ID's
20818844, 18615679, 20023270, 18615679, 19561230, 23470635

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene, (M) - Mutation
Trial Status: Showing all 10 results Per Page:
Protocol # Title Location Status Match
NCT02601950 A Phase II, Multicenter Study of the EZH2 Inhibitor Tazemetostat in Adult Subjects With INI1-Negative Tumors or Relapsed/Refractory Synovial Sarcoma A Phase II, Multicenter Study of the EZH2 Inhibitor Tazemetostat in Adult Subjects With INI1-Negative Tumors or Relapsed/Refractory Synovial Sarcoma MGH Open D
NCT00585195 A Study Of Oral PF-02341066, A c-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer A Study Of Oral PF-02341066, A c-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer MGH Open D
NCT02642016 A Study to Evaluate the Safety and Pharmacokinetics of KTN0158 in Adult Patients With Advanced Solid Tumors A Study to Evaluate the Safety and Pharmacokinetics of KTN0158 in Adult Patients With Advanced Solid Tumors MGH Open D
NCT02568267 Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) MGH Open D
NCT02611024 Pharmacokinetic Study of PM01183 in Combination With Irinotecan in Patients With Selected Solid Tumors Pharmacokinetic Study of PM01183 in Combination With Irinotecan in Patients With Selected Solid Tumors MGH Open D
NCT01858168 Phase I Study of Olaprib and Temozolomide for Ewings Sarcoma Phase I Study of Olaprib and Temozolomide for Ewings Sarcoma MGH Open D
NCT01659203 Proton or Photon RT for Retroperitoneal Sarcomas Proton or Photon RT for Retroperitoneal Sarcomas MGH Open D
NCT02180867 Radiation Therapy With or Without Combination Chemotherapy or Pazopanib Hydrochloride Before Surgery in Treating Patients With Newly Diagnosed Non-Rhabdomyosarcoma Soft Tissue Sarcomas That Can Be Removed by Surgery Radiation Therapy With or Without Combination Chemotherapy or Pazopanib Hydrochloride Before Surgery in Treating Patients With Newly Diagnosed Non-Rhabdomyosarcoma Soft Tissue Sarcomas That Can Be Removed by Surgery MGH Open D
NCT02576431 Study of LOXO-101 in Subjects With NTRK Fusion Positive Solid Tumors (NAVIGATE) Study of LOXO-101 in Subjects With NTRK Fusion Positive Solid Tumors (NAVIGATE) MGH Open D
NCT02660034 The Safety, Pharmacokinetics and Antitumor Activity of the BGB-A317 in Combination With the BGB-290 in Subjects With Advanced Solid Tumors The Safety, Pharmacokinetics and Antitumor Activity of the BGB-A317 in Combination With the BGB-290 in Subjects With Advanced Solid Tumors MGH Open D
MGH has many open clinical trials for other cancers not shown on the Targeted Cancer Care website. They can be found on the MassGeneral.org clinical trials search page.

Additional clinical trials may be applicable to your search criteria, but they may not be available at MGH. These clinical trials can typically be found by searching the clinicaltrials.gov website.
Trial Status: Showing all 10 results Per Page:

Share with your Physican

Print information for your Physician.

Print information