Bladder Cancer, ERBB2 (HER2), Gene Amplification

View:
Expand Collapse Bladder Cancer  - General Description This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
Expand Collapse ERBB2 (HER2)  - General Description
CLICK IMAGE FOR MORE INFORMATION
Erbb2, often called HER2, is a gene that provides the code for making a cell surface growth receptor called the ErbB2 (HER2). When certain growth factors (proteins that stimulate cell growth and division) bind to this receptor, they activate a signaling system inside the cell that ultimately promotes diverse functions such as growth, interaction and adhesion between cells, and ability of the cell to migrate within tissues. In some tumors, the activation of HER2 signaling is an important mechanism that drives the disease process. This can occur through HER2 gene amplification (the most common mechanism) or HER2 gene mutation in cancer cells.

Extra copies of the HER2 gene (gene amplification) have been found in a number of different cancers. This causes the cancer cells to make excess HER2 (overexpression), which in turn, tells the cells to grow and divide in an uncontrolled manner. The presence of amplified HER2 has been reported in breast tumors, esophageal tumors, gastric cancers, ovarian tumors and bladder cancer. Genetic mutations (changes in the DNA sequence that codes the ERBB2 (HER2)protein have also been found in certain tumors.

Testing for genetic alterations in ERBB2 (HER2) can be performed at the MGH, or other large academic centers. Treatment and Clinical Trials testing new therapies are also available at MGH Cancer Center.

Source: Genetics Home Reference
Erbb2, often called HER2, is a gene that provides the code for making a cell surface growth receptor called the ErbB2 (HER2). When certain growth factors (proteins that stimulate cell growth and division) bind to this receptor, they activate a signaling system inside the cell that ultimately promotes diverse functions such as growth, interaction and adhesion between cells, and ability of the cell to migrate within tissues. In some tumors, the activation of HER2 signaling is an important mechanism that drives the disease process. This can occur through HER2 gene amplification (the most common mechanism) or HER2 gene mutation in cancer cells.

Extra copies of the HER2 gene (gene amplification) have been found in a number of different cancers. This causes the cancer cells to make excess HER2 (overexpression), which in turn, tells the cells to grow and divide in an uncontrolled manner. The presence of amplified HER2 has been reported in breast tumors, esophageal tumors, gastric cancers, ovarian tumors and bladder cancer. Genetic mutations (changes in the DNA sequence that codes the ERBB2 (HER2)protein have also been found in certain tumors.

Testing for genetic alterations in ERBB2 (HER2) can be performed at the MGH, or other large academic centers. Treatment and Clinical Trials testing new therapies are also available at MGH Cancer Center.

Source: Genetics Home Reference
PubMed ID's
15864276, 9130710, 15457249, 16397024, 18772890, 16843263, 16988931, 22899400
Expand Collapse Gene Amplification  in ERBB2 (HER2)
Genetic alterations in HER2 found in cancers such as breast cancer include gene amplification, in which multiple copies of the HER2 gene are found in cancer cells. Overexpression of HER2 has also been found in some esophageal cancers, lung cancers, bladder cancers, and cancers of the head and neck. Overexpression of HER2 results in a higher level of the protein being produced in cells, and therefore a higher level of activity. Testing for gene amplification is performed at MGH and other large centers. Treatment and clinical trials are currently underway at MGH investigating novel HER2 inhibitors and combination drug strategies.
Genetic alterations in HER2 found in cancers such as breast cancer include gene amplification, in which multiple copies of the HER2 gene are found in cancer cells. Overexpression of HER2 has also been found in some esophageal cancers, lung cancers, bladder cancers, and cancers of the head and neck. Overexpression of HER2 results in a higher level of the protein being produced in cells, and therefore a higher level of activity. Testing for gene amplification is performed at MGH and other large centers. Treatment and clinical trials are currently underway at MGH investigating novel HER2 inhibitors and combination drug strategies.

Our Bladder Cancer Team

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene, (M) - Mutation
Trial Status: Showing Results: 1-10 of 19 Per Page:
12Next »
Protocol # Title Location Status Match
NCT01953926 An Open-label, Phase 2 Study of Neratinib in Patients With Solid Tumors With Somatic Human Epidermal Growth Factor Receptor (EGFR, HER2, HER3) Mutations or EGFR Gene Amplification An Open-label, Phase 2 Study of Neratinib in Patients With Solid Tumors With Somatic Human Epidermal Growth Factor Receptor (EGFR, HER2, HER3) Mutations or EGFR Gene Amplification MGH Open DGM
NCT02052778 A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities MGH Open D
NCT02897765 A Personalized Cancer Vaccine (NEO-PV-01) w/ Nivolumab for Patients With Melanoma, Lung Cancer or Bladder Cancer A Personalized Cancer Vaccine (NEO-PV-01) w/ Nivolumab for Patients With Melanoma, Lung Cancer or Bladder Cancer MGH Open D
NCT02450331 A Study of Atezolizumab Versus Observation as Adjuvant Therapy in Participants With High-Risk Muscle-Invasive Urothelial Carcinoma (UC) After Surgical Resection A Study of Atezolizumab Versus Observation as Adjuvant Therapy in Participants With High-Risk Muscle-Invasive Urothelial Carcinoma (UC) After Surgical Resection MGH Open D
NCT02603432 A Study Of Avelumab In Patients With Locally Advanced Or Metastatic Urothelial Cancer (JAVELIN Bladder 100) A Study Of Avelumab In Patients With Locally Advanced Or Metastatic Urothelial Cancer (JAVELIN Bladder 100) MGH Open D
NCT02323191 A Study of Emactuzumab and Atezolimumab Administered in Combination in Participants With Advanced Solid Tumors A Study of Emactuzumab and Atezolimumab Administered in Combination in Participants With Advanced Solid Tumors MGH Open D
NCT01948297 Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations MGH Open D
NCT02989064 MAGE-A10ᶜ⁷⁹⁶T for Urothelial Cancer, Melanoma or Head and Neck Cancers MAGE-A10ᶜ⁷⁹⁶T for Urothelial Cancer, Melanoma or Head and Neck Cancers MGH Open D
NCT02465060 NCI-MATCH: Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma NCI-MATCH: Targeted Therapy Directed by Genetic Testing in Treating Patients With Advanced Refractory Solid Tumors, Lymphomas, or Multiple Myeloma MGH Open D
NCT02655822 Phase 1/1b Study to Evaluate the Safety and Tolerability of CPI-444 Alone and in Combination With Atezolizumab in Advanced Cancers Phase 1/1b Study to Evaluate the Safety and Tolerability of CPI-444 Alone and in Combination With Atezolizumab in Advanced Cancers MGH Open D
Trial Status: Showing Results: 1-10 of 19 Per Page:
12Next »
Our Bladder Cancer Team

Share with your Physican

Print information for your Physician.

Print information