Bladder Cancer, Beta-Catenin (CTNNB1)

View:
Expand Collapse Bladder Cancer  - General Description This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
This year about 74,000 people in the U.S. (76% of them men and half will be over the age of 73 years old) will be told by a doctor that they have cancer of the urinary bladder. With significant improvements in the treatment of this malignancy, about 550,000 of them remain alive today.

Bladder cancer begins in different types of cells found in the inner lining of the bladder, the flexible muscular organ that stores urine. Transitional cells, which stretch or shrink as the bladder fills or empties, account for 90% of bladder cancers in the United States. Less commonly (in 6-8% of U.S. bladder cancers), the cancer begins in squamous cells that may form in response to irritation or infection that has lasted a long time. Adenocarcinoma begins in cells that make mucous and accounts for only about 2% of U.S. bladder cancers. Adenocarcinoma of the bladder is also believed to be a result of long-lasting irritation or inflammation.

If the cancer stays in the lining of the bladder, it is called superficial bladder cancer. Sometimes, though, transitional cell cancer spreads through the lining and breaks into the muscular wall beneath it or spreads to nearby organs and lymph nodes. In this case it is known as invasive bladder cancer.

Bladder cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, bladder cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the blood stream and go to other places in the body. In these distant places, the bladder cancer cells cause secondary (metastatic) tumors to grow, in the bones, for example. To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a lymph node and a pathologist inspects it under a microscope. Several kinds of imaging can also be performed to determine if bladder cancer has spread. These include CT scans, MRI, chest x-rays and bone scans.

Source: National Cancer Institute, 2012
Expand Collapse Beta-Catenin (CTNNB1)  - General Description
CLICK IMAGE FOR MORE INFORMATION
The CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway.

The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration.

In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1.

Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma.

Source: TumorPortal.org
The CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway.

The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration.

In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1.

Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma.

Source: TumorPortal.org
PubMed ID's
19619488, 22682243
Expand Collapse Beta-Catenin (CTNNB1)  in Bladder Cancer
New information on cancer, genes, and mutations is being discovered each day. Currently, researchers have not found any information on the gene and disease you have chosen. Please check back as new data may be available soon.
Expand Collapse No mutation selected
The mutation of a gene provides clinicians with a very detailed look at your cancer. Knowing this information could change the course of your care. To learn how you can find out more about genetic testing please visit http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.
Our Bladder Cancer Team

How do I get tested?

Getting tested in one of the first steps in learning what targeted therapy may work for you. 

Learn more about how to get tested.

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene
Trial Status: Showing Results: 1-10 of 12 Per Page:
12Next »
Protocol # Title Location Status Match
NCT02052778 A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities A Dose Finding Study Followed by a Safety and Efficacy Study in Patients With Advanced Solid Tumors or Multiple Myeloma With FGF/FGFR-Related Abnormalities MGH Open D
NCT02219724 A Phase I, Open-Label Study of MOXR0916 in Patients With Locally Advanced or Metastatic Solid Tumors A Phase I, Open-Label Study of MOXR0916 in Patients With Locally Advanced or Metastatic Solid Tumors MGH Open D
NCT02082210 A Study of LY2875358 in Combination With Ramucirumab (LY3009806) in Participants With Advanced Cancer A Study of LY2875358 in Combination With Ramucirumab (LY3009806) in Participants With Advanced Cancer MGH Open D
NCT02323191 A Study of RO5509554 and MPDL3280A Administered in Combination in Patients With Advanced Solid Tumors A Study of RO5509554 and MPDL3280A Administered in Combination in Patients With Advanced Solid Tumors MGH Open D
NCT01953926 An Open-label, Phase 2 Study of Neratinib in Patients With Solid Tumors With Somatic Human Epidermal Growth Factor Receptor (EGFR, HER2, HER3) Mutations or EGFR Gene Amplification An Open-label, Phase 2 Study of Neratinib in Patients With Solid Tumors With Somatic Human Epidermal Growth Factor Receptor (EGFR, HER2, HER3) Mutations or EGFR Gene Amplification MGH Open D
NCT01948297 Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations Debio 1347-101 Phase I Trial in Advanced Solid Tumours With Fibroblast Growth Factor Receptor (FGFR) Alterations MGH Open D
NCT02501096 Phase 1b/2 Trial of Lenvatinib (E7080) Plus Pembrolizumab in Subjects With Selected Solid Tumors Phase 1b/2 Trial of Lenvatinib (E7080) Plus Pembrolizumab in Subjects With Selected Solid Tumors MGH Open D
NCT01631552 Phase I/II Study of IMMU-132 in Patients With Epithelial Cancers Phase I/II Study of IMMU-132 in Patients With Epithelial Cancers MGH Open D
NCT00981656 Radiation Therapy and Chemotherapy in Treating Patients With Stage I Bladder Cancer Radiation Therapy and Chemotherapy in Treating Patients With Stage I Bladder Cancer MGH Open D
NCT01391143 Safety Study of MGA271 in Refractory Cancer Safety Study of MGA271 in Refractory Cancer MGH Open D
Trial Status: Showing Results: 1-10 of 12 Per Page:
12Next »
Our Bladder Cancer Team

How do I get tested?

Getting tested in one of the first steps in learning what targeted therapy may work for you. 

Learn more about how to get tested.

Share with your Physican

Print information for your Physician.

Print information