Mass General Hospital Cancer Center treats patients with many cancer types. To learn more about the different cancer types that can be treated at the Cancer Center, please visit the Cancer Center website at the following page:
http://www.massgeneral.org/cancer/services/
CLICK IMAGE FOR MORE INFORMATIONNRAS is a gene that provides the code for making NRAS, a GTPase that converts GTP to GDP. This protein is part of the MAP kinase signaling cascade that relays chemical signals from the outside of the cell to the cell's nucleus, and is primarily involved in controlling cell division. When NRAS is attached (bound) to GDP, it is in its “off” position and can't send signals to the nucleus. But when a GTP molecule arrives and binds to NRAS, NRAS is activated and sends its signal, and then it converts the GTP into GDP and returns to the "off" position. HRAS and KRAS are other GTPases that are similar to NRAS.
When mutated, however, NRAS can act as an oncogene, causing normal cells to become cancerous. The mutations can shift the NRAS protein into the "on" position all the time. These NRAS mutations are said to be somatic, because instead of coming from a parent and being present in every cell (hereditary), they are acquired during the course of a person's life and are found only in cells that become cancerous.
Source: Genetics Home Reference
NRAS (neuroblastoma RAS viral oncogene homolog) is a member of the closely related RAS gene family that also includes KRAS and HRAS. These RAS members are small GTPases that mediate extracellular signals to the downstream effectors RAF, PI3K and RALGDS. RAS members are involved in regulating diverse cellular processes including survival, proliferation and differentiation. While activating mutations in the RAS genes lead to sustained GTPase activation that contributes to oncogenesis, each oncogene exerts clear differences. Mutational hotspots in NRAS reside primarily in amino acid residues 12, 13 or 61 and function to suppress apoptosis.
Source: Genetics Home Reference
PubMed ID's
18372904,
21779495
The NRAS Q61H mutation arises from a single nucleotide change (c.183A>C) and results in an amino acid substitution of the glutamine (Q) at position 61 by a histidine (H).
The NRAS Q61H mutation arises from a single nucleotide change (c.183A>C) and results in an amino acid substitution of the glutamine (Q) at position 61 by a histidine (H).