Searching On:

Disease:

Gene:

ERBB2 (HER2), Gene Amplification

View:
Expand Collapse No disease selected  - General Description
Mass General Hospital Cancer Center treats patients with many cancer types. To learn more about the different cancer types that can be treated at the Cancer Center, please visit the Cancer Center website at the following page: http://www.massgeneral.org/cancer/services/
Expand Collapse ERBB2 (HER2)  - General Description ERBB2, often called HER2, is a gene that provides the code for making a cell surface growth receptor called the ERBB2 (HER2). When certain growth factors (proteins that stimulate cell growth and division) bind to this receptor, they activate a signaling system inside the cell that ultimately promotes diverse functions such as growth, interaction and adhesion between cells, and ability of the cell to migrate within tissues. In some tumors, the activation of HER2 signaling is an important mechanism that drives the disease process. This can occur through HER2 gene amplification (the most common mechanism) or HER2 gene mutation in cancer cells. Extra copies of the ERBB2 (HER2) gene (gene amplification) have been found in a number of different cancers. This causes the cancer cells to make excess HER2 (overexpression), which in turn, tells the cells to grow and divide in an uncontrolled manner. Genetic mutations (changes in the DNA sequence that codes the ERBB2 (HER2) protein have also been found in certain tumors. Source: Genetics Home ReferenceERBB2, often called HER2, is a gene that provides the code for making a cell surface growth receptor called the ERBB2 (HER2). When certain growth factors (proteins that stimulate cell growth and division) bind to this receptor, they activate a signaling system inside the cell that ultimately promotes diverse functions such as growth, interaction and adhesion between cells, and ability of the cell to migrate within tissues. In some tumors, the activation of HER2 signaling is an important mechanism that drives the disease process. This can occur through HER2 gene amplification (the most common mechanism) or HER2 gene mutation in cancer cells. Extra copies of the ERBB2 (HER2) gene (gene amplification) have been found in a number of different cancers. This causes the cancer cells to make excess HER2 (overexpression), which in turn, tells the cells to grow and divide in an uncontrolled manner. Genetic mutations (changes in the DNA sequence that codes the ERBB2 (HER2) protein have also been found in certain tumors. Source: Genetics Home Reference
CLICK IMAGE FOR MORE INFORMATION
ERBB2, often called HER2, is a gene that provides the code for making a cell surface growth receptor called the ERBB2 (HER2). When certain growth factors (proteins that stimulate cell growth and division) bind to this receptor, they activate a signaling system inside the cell that ultimately promotes diverse functions such as growth, interaction and adhesion between cells, and ability of the cell to migrate within tissues. In some tumors, the activation of HER2 signaling is an important mechanism that drives the disease process. This can occur through HER2 gene amplification (the most common mechanism) or HER2 gene mutation in cancer cells.

Extra copies of the ERBB2 (HER2) gene (gene amplification) have been found in a number of different cancers. This causes the cancer cells to make excess HER2 (overexpression), which in turn, tells the cells to grow and divide in an uncontrolled manner. Genetic mutations (changes in the DNA sequence that codes the ERBB2 (HER2) protein have also been found in certain tumors.

Source: Genetics Home Reference
ERBB2, often called HER2, is a gene that provides the code for making a cell surface growth receptor called the ERBB2 (HER2). When certain growth factors (proteins that stimulate cell growth and division) bind to this receptor, they activate a signaling system inside the cell that ultimately promotes diverse functions such as growth, interaction and adhesion between cells, and ability of the cell to migrate within tissues. In some tumors, the activation of HER2 signaling is an important mechanism that drives the disease process. This can occur through HER2 gene amplification (the most common mechanism) or HER2 gene mutation in cancer cells.

Extra copies of the ERBB2 (HER2) gene (gene amplification) have been found in a number of different cancers. This causes the cancer cells to make excess HER2 (overexpression), which in turn, tells the cells to grow and divide in an uncontrolled manner. Genetic mutations (changes in the DNA sequence that codes the ERBB2 (HER2) protein have also been found in certain tumors.

Source: Genetics Home Reference
PubMed ID's
15864276, 9130710, 15457249, 16397024, 18772890, 16843263, 16988931, 22899400
Expand Collapse Gene Amplification  in ERBB2 (HER2)
Genetic alterations in HER2 have been found in several types of cancer. The alterations found in different tumors include gene amplification, in which multiple copies of the HER2 gene are found in cancer cells. Overexpression of HER2 has also been found in some cancers, resulting in a higher level of the ERBB2 (HER2) protein being produced in cells, and therefore a higher level of activity. Other genetic alterations include the insertion of nucleotides in one portion of the gene called exon 20. All of these changes result in ERBB2 (HER2) proteins that cannot be regulated normally by the cell, and the protein sends constant signals to the tumor cells to grow and proliferate.

Testing for gene amplification, exon 20 insertion, and all ERBB2 (HER2) mutations is performed at the Center for Integrated Diagnostics at MGH. Treatment is available at the MGH Cancer Center. In addition, clinical trials are available investigating novel HER2 inhibitors and combination drug strategies.
Genetic alterations in HER2 have been found in several types of cancer. The alterations found in different tumors include gene amplification, in which multiple copies of the HER2 gene are found in cancer cells. Overexpression of HER2 has also been found in some cancers, resulting in a higher level of the ERBB2 (HER2) protein being produced in cells, and therefore a higher level of activity. Other genetic alterations include the insertion of nucleotides in one portion of the gene called exon 20. All of these changes result in ERBB2 (HER2) proteins that cannot be regulated normally by the cell, and the protein sends constant signals to the tumor cells to grow and proliferate.

Testing for gene amplification, exon 20 insertion, and all ERBB2 (HER2) mutations is performed at the Center for Integrated Diagnostics at MGH. Treatment is available at the MGH Cancer Center. In addition, clinical trials are available investigating novel HER2 inhibitors and combination drug strategies.

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (G) - Gene, (M) - Mutation
Trial Status: Showing Results: 1-10 of 11 Per Page:
12Next »
Protocol # Title Location Status Match
NCT02657343 An Open-Label, Phase Ib/II Clinical Trial Of Cdk 4/6 Inhibitor, Ribociclib (Lee011), In Combination With Trastuzumab Or T-Dm1 For Advanced/Metastatic Her2-Positive Breast Cancer. An Open-Label, Phase Ib/II Clinical Trial Of Cdk 4/6 Inhibitor, Ribociclib (Lee011), In Combination With Trastuzumab Or T-Dm1 For Advanced/Metastatic Her2-Positive Breast Cancer. MGH Open GM
NCT02689284 Combination Margetuximab and Pembrolizumab for Advanced, Metastatic HER2(+) Gastric or Gastroesophageal Junction Cancer Combination Margetuximab and Pembrolizumab for Advanced, Metastatic HER2(+) Gastric or Gastroesophageal Junction Cancer MGH Open GM
NCT02580448 CYP17 Lyase and Androgen Receptor Inhibitor Treatment With Seviteronel Trial (INO-VT-464-006; NCT02580448) CYP17 Lyase and Androgen Receptor Inhibitor Treatment With Seviteronel Trial (INO-VT-464-006; NCT02580448) MGH Open GM
NCT01953926 Neratinib HER Mutation Basket Study (SUMMIT) Neratinib HER Mutation Basket Study (SUMMIT) MGH Open GM
NCT03043313 Tucatinib (ONT-380) and Trastuzumab in Treating Patients With HER2+ Metastatic Colorectal Cancer Tucatinib (ONT-380) and Trastuzumab in Treating Patients With HER2+ Metastatic Colorectal Cancer MGH Open GM
NCT02491099 A Phase II Evaluation of Afatinibin Patients With Persistent or Recurrent HER2-positive Uterine Serous Carcinoma A Phase II Evaluation of Afatinibin Patients With Persistent or Recurrent HER2-positive Uterine Serous Carcinoma MGH Open G
NCT02715531 A Study of the Safety and Efficacy of Atezolizumab Administered in Combination With Bevacizumab and/or Other Treatments in Participants With Solid Tumors A Study of the Safety and Efficacy of Atezolizumab Administered in Combination With Bevacizumab and/or Other Treatments in Participants With Solid Tumors MGH Open G
NCT02716116 A Trial of AP32788 in Non-Small Cell Lung Cancer A Trial of AP32788 in Non-Small Cell Lung Cancer MGH Open G
NCT02500199 Phase I Study of Pyrotinib in Patients With HER2-positive Solid Tumors Phase I Study of Pyrotinib in Patients With HER2-positive Solid Tumors MGH Open G
NCT02952729 Study of Antibody Drug Conjugate in Patients With Advanced Breast Cancer Expressing HER2 Study of Antibody Drug Conjugate in Patients With Advanced Breast Cancer Expressing HER2 MGH Open G
Trial Status: Showing Results: 1-10 of 11 Per Page:
12Next »

Share with your Physican

Print information for your Physician.

Print information