Lung Cancer, PTEN

View:
Expand Collapse Lung Cancer  - General Description This year about 226,000 people in the U.S. will be told by a doctor that they have lung cancer. However, about 390,000 Americans remain alive today after having been diagnosed with this malignancy. Lung cancer includes tumors that begin in tissues lining air passages inside the lungs and bronchi. The bronchi are the 2 branches of the windpipe (trachea) that lead to the lungs. Based on how the cells look under a microscope, lung cancers are divided into 2 main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of these cases.

The main subtypes of NSCLC are squamous cell carcinoma (cancer beginning in thin, flat scaly-looking cells), adenocarcinoma (cancer beginning in cells that make mucus and other substances) and large cell carcinoma (cancer beginning in several types of large cells). The 2 main types of SCLC are small cell carcinoma (oat cell cancer) and combined small cell carcinoma.

Lung cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the bloodstream and go to other places in the body. In these distant places, the cancer cells cause secondary tumors to grow. The main sites to which lung cancer spreads are the adrenal gland, liver and lungs.

To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a node near the primary tumor and a pathologist looks at it through a microscope to see if cancer cells are present. Several kinds of imaging also can be performed to determine if the cancer has spread. These include MRI, bone scans and endoscopic ultrasound (EUS).

The FDA has approved several targeted therapies to treat patients with NSCLC. These include bevacizumab (Avastin), cetuximab (Erbitux), erlotinib (Tarceva), gefitnib (Iressa) and crizotinib (Xalkori). So far there are no FDA-approved targeted therapies for SCLC.

Despite significant improvements in the treatment of lung cancers, novel therapies and treatment strategies are needed.

Source: National Cancer Institute, 2012
Estimated new cases and deaths from lung cancer (non-small cell and small cell combined) in the United States in 2012:

New cases: 226,160
Deaths: 160,340

Lung cancer is the leading cause of cancer-related mortality in the United States. The 5-year relative survival rate from 1995 to 2001 for patients with lung cancer was 15.7%. The 5-year relative survival rate varies markedly depending on the stage at diagnosis, from 49% to 16% to 2% for patients with local, regional and distant stage disease, respectively.

NSCLC arises from the epithelial cells of the lung, from the central bronchi to the terminal alveoli. The histological type of NSCLC correlates with the site of origin, reflecting the variation in respiratory tract epithelium from the bronchi to the alveoli. Squamous cell carcinoma usually starts near a central bronchus while adenocarcinoma usually originates in peripheral lung tissue.

Tobacco smoking is the strongest risk factor for developing lung cancer, though it should be noted that the majority of patients diagnosed with lung cancer quit smoking years prior to diagnosis or were never-smokers (up to 15% of cases).

The identification of driver oncogene mutations in lung cancer has led to the development of targeted therapy that has vastly broadened treatment options and improved outcomes for subsets of patients with metastatic disease. It is now common practice to determine the genotype of a NSCLC patient early in the course of their diagnosis, to ensure that all possible treatment options are considered.

Source: National Cancer Institute, 2012
This year about 226,000 people in the U.S. will be told by a doctor that they have lung cancer. However, about 390,000 Americans remain alive today after having been diagnosed with this malignancy. Lung cancer includes tumors that begin in tissues lining air passages inside the lungs and bronchi. The bronchi are the 2 branches of the windpipe (trachea) that lead to the lungs. Based on how the cells look under a microscope, lung cancers are divided into 2 main types: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC accounts for 85% of these cases.

The main subtypes of NSCLC are squamous cell carcinoma (cancer beginning in thin, flat scaly-looking cells), adenocarcinoma (cancer beginning in cells that make mucus and other substances) and large cell carcinoma (cancer beginning in several types of large cells). The 2 main types of SCLC are small cell carcinoma (oat cell cancer) and combined small cell carcinoma.

Lung cancer (and other tumors) can spread (metastasize) from the place where it started (the primary tumor) in 3 ways. First, it can invade the normal tissue surrounding it. Second, cancer cells can enter the lymph system and travel through lymph vessels to distant parts of the body. Third, the cancer cells can get into the bloodstream and go to other places in the body. In these distant places, the cancer cells cause secondary tumors to grow. The main sites to which lung cancer spreads are the adrenal gland, liver and lungs.

To find out whether the cancer has entered the lymph system, a surgeon removes all or part of a node near the primary tumor and a pathologist looks at it through a microscope to see if cancer cells are present. Several kinds of imaging also can be performed to determine if the cancer has spread. These include MRI, bone scans and endoscopic ultrasound (EUS).

The FDA has approved several targeted therapies to treat patients with NSCLC. These include bevacizumab (Avastin), cetuximab (Erbitux), erlotinib (Tarceva), gefitnib (Iressa) and crizotinib (Xalkori). So far there are no FDA-approved targeted therapies for SCLC.

Despite significant improvements in the treatment of lung cancers, novel therapies and treatment strategies are needed.

Source: National Cancer Institute, 2012
Estimated new cases and deaths from lung cancer (non-small cell and small cell combined) in the United States in 2012:

New cases: 226,160
Deaths: 160,340

Lung cancer is the leading cause of cancer-related mortality in the United States. The 5-year relative survival rate from 1995 to 2001 for patients with lung cancer was 15.7%. The 5-year relative survival rate varies markedly depending on the stage at diagnosis, from 49% to 16% to 2% for patients with local, regional and distant stage disease, respectively.

NSCLC arises from the epithelial cells of the lung, from the central bronchi to the terminal alveoli. The histological type of NSCLC correlates with the site of origin, reflecting the variation in respiratory tract epithelium from the bronchi to the alveoli. Squamous cell carcinoma usually starts near a central bronchus while adenocarcinoma usually originates in peripheral lung tissue.

Tobacco smoking is the strongest risk factor for developing lung cancer, though it should be noted that the majority of patients diagnosed with lung cancer quit smoking years prior to diagnosis or were never-smokers (up to 15% of cases).

The identification of driver oncogene mutations in lung cancer has led to the development of targeted therapy that has vastly broadened treatment options and improved outcomes for subsets of patients with metastatic disease. It is now common practice to determine the genotype of a NSCLC patient early in the course of their diagnosis, to ensure that all possible treatment options are considered.

Source: National Cancer Institute, 2012
Expand Collapse PTEN  - General Description
CLICK IMAGE FOR MORE INFORMATION
PTEN is a gene that provides the code for making a protein called phosphatase and tensin homolog (PTEN). Found in almost all tissues in the body, this protein acts as a tumor suppressor. That is, it keeps cells from growing and dividing too fast or in an uncontrolled way. The PTEN protein is part of a signaling pathway that tells cells to stop dividing and triggers their self-destruction (apoptosis). It also may help control how cells move (migration), stick to other cells (adhesion) and protect their genetic information.

Somatic mutations in PTEN are among the most common genetic changes found in human cancers. Instead of coming from a parent and being present in every cell (hereditary), somatic mutations are acquired during the course of a person's life and are found only in cells that become cancerous. PTEN may be the most frequently mutated gene in prostate cancer and endometrial cancer. These mutations usually result in a defective protein that has lost its ability to be a tumor suppressor. Such mutations also are found in certain brain tumors (glioblastomas and astrocytomas) and melanoma of the skin. Loss of PTEN expression is also a common way by which PTEN activity can be reduced and the PI3K pathway can be activated.

Several related conditions caused by inherited mutations in PTEN are grouped together as PTEN hamartoma tumor syndrome. One of these conditions is Cowden syndrome, which is characterized by the growth of many hamartomas and an increased risk of developing breast, thyroid or endometrial cancer. Mutations that cause Cowden syndrome lead to production of a defective PTEN protein that cannot stop cell division or trigger apoptosis, which contributes to the development of hamartomas and cancerous tumors.

Source: Genetics Home Reference
The PTEN gene encodes a lipid phosphatase that antagonizes oncogenic PI3K/AKT signaling via dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3) at the cell membrane. Cancer-associated genomic alterations in PTEN result in PTEN inactivation and thus increased activity of the PI3K/AKT pathway. Somatic mutations of PTEN occur in multiple malignancies, including gliomas, melanoma, prostate, endometrial, breast, ovarian, renal and lung cancers. Germline PTEN mutations are associated with inherited hamartoma syndromes, including Cowden syndrome. Loss of PTEN expression is also a common way by which PTEN activity can be reduced and the PI3K pathway can be activated.

Source: Genetics Home Reference
Expand Collapse PTEN  in Lung Cancer
Genetic alterations in the gene encoding the PTEN tumor suppressor have been found in some cancers. Most often, there is a loss of the gene, so there is no PTEN protein in the cancer cells to stop unregulated growth.

Testing for mutations in PTEN is performed at the MGH Center for Integrated Diagnostics. Treatment for PTEN mutated lung cancers is available at the MGH Cancer Center, as are clinical trials testing new and improved treatments for patients.

Genetic alterations in the gene encoding the PTEN tumor suppressor have been found in some cancers. Most often, there is a loss of the gene, so there is no PTEN protein in the cancer cells to stop unregulated growth.

Testing for mutations in PTEN is performed at the MGH Center for Integrated Diagnostics. Treatment for PTEN mutated lung cancers is available at the MGH Cancer Center, as are clinical trials testing new and improved treatments for patients.

PubMed ID's
20085938, 20881644, 19351834, 9598803, 11504908, 20018398
Expand Collapse No mutation selected
The mutation of a gene provides clinicians with a very detailed look at your cancer. Knowing this information could change the course of your care. To learn how you can find out more about genetic testing please visit http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.
Our Lung Cancer Team

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene
Trial Status: Showing Results: 1-10 of 85 Per Page:
123456789Next »
Protocol # Title Location Status Match
NCT02961283 Study of ASN003 in Subjects With Advanced Solid Tumors Study of ASN003 in Subjects With Advanced Solid Tumors MGH Open DG
NCT02637531 A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IPI-549 A Dose-Escalation Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Pharmacodynamics of IPI-549 MGH Open D
NCT03192345 A First-in-human Study of the Safety, Pharmacokinetics, Pharmacodynamics and Anti-tumor Activity of SAR439459 Monotherapy and Combination of SAR439459 and REGN2810 in Patients With Advanced Solid Tumors A First-in-human Study of the Safety, Pharmacokinetics, Pharmacodynamics and Anti-tumor Activity of SAR439459 Monotherapy and Combination of SAR439459 and REGN2810 in Patients With Advanced Solid Tumors MGH Open D
NCT02897765 A Personal Cancer Vaccine (NEO-PV-01) w/ Nivolumab for Patients With Melanoma, Lung Cancer or Bladder Cancer A Personal Cancer Vaccine (NEO-PV-01) w/ Nivolumab for Patients With Melanoma, Lung Cancer or Bladder Cancer MGH Open D
NCT03380871 A Personal Cancer Vaccine (NEO-PV-01) With Pembrolizumab and Chemotherapy for Patients With Lung Cancer A Personal Cancer Vaccine (NEO-PV-01) With Pembrolizumab and Chemotherapy for Patients With Lung Cancer MGH Open D
NCT02715284 A Phase 1 Dose Escalation and Cohort Expansion Study of TSR-042, an Anti-PD-1 Monoclonal Antibody, in Patients With Advanced Solid Tumors A Phase 1 Dose Escalation and Cohort Expansion Study of TSR-042, an Anti-PD-1 Monoclonal Antibody, in Patients With Advanced Solid Tumors MGH Open D
NCT03134638 A Phase 1 Study of SY-1365 in Adult Patients With Advanced Solid Tumors A Phase 1 Study of SY-1365 in Adult Patients With Advanced Solid Tumors MGH Open D
NCT02817633 A Phase 1 Study of TSR-022, an Anti-TIM-3 Monoclonal Antibody, in Patients With Advanced Solid Tumors A Phase 1 Study of TSR-022, an Anti-TIM-3 Monoclonal Antibody, in Patients With Advanced Solid Tumors MGH Open D
NCT03202940 A Phase IB/II Study of Alectinib Combined With Cobimetinib in Advanced ALK-Rearranged (ALK+) NSCLC A Phase IB/II Study of Alectinib Combined With Cobimetinib in Advanced ALK-Rearranged (ALK+) NSCLC MGH Open D
NCT03139370 A Study Evaluating the Safety and Efficacy of MAGE-A3/A6 T Cell Receptor Engineered T Cells (KITE-718) in HLA-DPB1*04:01 Positive Subjects With Advanced Cancers A Study Evaluating the Safety and Efficacy of MAGE-A3/A6 T Cell Receptor Engineered T Cells (KITE-718) in HLA-DPB1*04:01 Positive Subjects With Advanced Cancers MGH Open D
Trial Status: Showing Results: 1-10 of 85 Per Page:
123456789Next »
Our Lung Cancer Team

Share with your Physican

Print information for your Physician.

Print information