Gallbladder cancer and bile duct cancer arise in specific areas of the biliary tract. As a group, they are fairly rare, accounting for only 3% of gastrointestinal malignancies. Standard therapy involving surgery and/or chemotherapy can be effective if the disease is detected early. However, recurrent or advanced disease has been challenging to treat.
There have been significant advances in our understanding of the underlying mechanisms of cancer development in biliary tract cancers, particularly those arising in the bile duct. Cholangiocarcinoma is the more common name for bile duct cancer and can occur either inside the liver (intrahepatic cholangiocarcinoma) or in the part of the bile duct that lies outside the liver (extrahapatic cholangiocarcinoma). The incidence of cholangiocarcinoma is rising worldwide, possibly due to an increasing incidence of hepatitis B and hepatitis C infection that can cause cirrhosis of the liver.
Ongoing research has identified new potential directions for targeted therapy in cholangiocarcinoma. Researchers at the MGH discovered a subset of patients with intrahepatic cholangiocarcinoma that have a mutation in a gene called IDH (isocitrate dehydrogenase). This mutation alters the normal activity of the enzyme encoded by this gene, with the resulting production of a new metabolite (2-hydroxyglutarate, or 2-HG). This 2-HG metabolite accumulates to very high levels in the tumor cells and alters how the tumor cell reads a subset of important genes in the DNA (epigenetic regulation). Furthermore, in a different subset of cholangiocarcinoma patients, a chromosomal abnormality in the gene FGFR2 has been identified. This abnormality is a fusion between part of the FGFR2 gene to part of another gene. The result is a cancer protein that constantly activates oncogenic FGFR2 signaling. The clinical utility of therapeutically targeting these tumor alterations are topics of current clinical trial investigations.
Gallbladder cancer and bile duct cancer arise in specific areas of the biliary tract. As a group, they are fairly rare, accounting for only 3% of gastrointestinal malignancies. Standard therapy involving surgery and/or chemotherapy can be effective if the disease is detected early. However, recurrent or advanced disease has been challenging to treat.
There have been significant advances in our understanding of the underlying mechanisms of carcinogenesis in biliary tract cancers, particularly those arising in the bile duct. Cholangiocarcinoma is the more common name for bile duct cancer and can occur either inside the liver (intrahepatic cholangiocarcinoma) or in the part of the bile duct that lies outside the liver (extrahapatic cholangiocarcinoma). The incidence of cholangiocarcinoma is rising worldwide, possibly due to an increasing incidence of hepatitis B and hepatitis C infection that can cause cirrhosis of the liver.
Ongoing research has identified new potential directions for targeted therapy in cholangiocarcinoma. Researchers at the MGH discovered a subset of patients with intrahepatic cholangiocarcinoma that harbor a mutation in a gene called IDH (isocitrate dehydrogenase). This alters the normal activity of the enzyme encoded by this gene, thereby producing a new metabolite (2-hydroxyglutarate, or 2-HG). This metabolite accumulates to very high levels in the tumor cells and alters how the tumor cell reads a subset of important genes (epigenetic regulation). Furthermore, a chromosomal abnormality in the gene FGFR2 has been identified in a subset of cholangiocarcinoma patients. This abnormality is a fusion between part of the FGFR2 gene to part of one of several other genes. The result is a cancer protein that constantly activates oncogenic FGFR2 signaling. The clinical utility of therapeutically targeting these tumor alterations are topics of current clinical trial investigations.
PubMed ID's
2083573,
20375404,
23558953,
25384085,
25608663
Cancer research and treatments are constantly changing. Knowing the gene associated with your cancer can help doctors determine the most appropriate direction of care for you. To learn how you can find out more about genetic testing please visit
http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.
The mutation of a gene provides clinicians with a very detailed look at your cancer. Knowing this information could change the course of your care. To learn how you can find out more about genetic testing please visit
http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.