Bone and Soft Tissue Sarcoma, Beta-Catenin (CTNNB1)

View:
Expand Collapse Bone and Soft Tissue Sarcoma  - General Description This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
This year about 12,000 people in the U.S. will be told by a doctor that they have cancer of the soft tissue. Sarcomas develop more commonly in adults, although certain types of sarcoma are found more typically in children.

Soft tissue sarcomas can form almost anywhere in the body, including cartilage, fat, muscle, fibrous tissue, blood vessels, and other connective or supportive tissues; osteosarcomas develop in bone, liposarcomas form in fat; rhabdomyosarcomas form in muscle; Ewing sarcomas form in bone and soft tissue; Kaposi sarcoma and uterine sarcoma are other types of soft tissue sarcomas. Because there are many types of soft tissue sarcoma, the cell type must be identified before treatment decisions are made. There are ongoing clinical trials using many forms of therapy in specific types of sarcoma.

Source: National Cancer Institute, 2017
Expand Collapse Beta-Catenin (CTNNB1)  - General Description
CLICK IMAGE FOR MORE INFORMATION
The CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway.

The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration.

In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1.

Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma.

Source: TumorPortal.org
The CTNNB1 gene encodes a protein called beta-catenin that has several important functions in the cell. These include being involved in cell to cell contacts at adherens junctions, and being involved in the WNT signaling pathway.

The first role beta-catenin is integral to is in participating in cell to cell contacts. Where cells are in contact with one another, beta catenin is part of a complex of proteins that form what are called adherens junctions. Adherens junctions are protein complexes that occur at cell-to-cell junctions and are essential for the formation and maintenance of epithelial cell layers. In this role, beta-catenin functions to anchor the actin cytoskeleton of cells, and to transmit the contact inhibition signal that causes cells to stop dividing once the epithelial layer of cells is complete. Beta catenin also has a role in cell migration.

In a second role, beta-catenin is involved in the Wnt signaling pathway (see graphic above). In the absence of a Wnt signal, beta catenin is normally kept at very low levels within the cell by a destruction complex. This destruction complex includes proteins called GSK-3, APC, and axin, and is responsible for degrading beta catenin. When a Wnt ligand binds to a Wnt receptor on the cell surface, this triggers a signal in the cell that causes the dissociation of the destruction complex, and beta catenin is no longer degraded. Instead, it builds up in the cytoplasm of the cell, and binds to T cell factor (TCF). Beta catenin/TCF translocate into the nucleus, and bind to Wnt target genes that promote growth, including C-Myc and Cyclin D1.

Mutations in the CTNNB1 gene that encodes the beta catenin protein result in the abnormal accumulation of the beta catenin protein in the cell. These and are frequently found in some cancers including colorectal cancer, endometrial and uterine cancers, as well as medulloblastomas. Mutations in CTNNB1/the beta catenin protein also occur in adenocarcinoma of the lung and colorectal cancers, and less frequently in liver cancer, gastric adenocarcinoma, bladder cancer, desmoid tumors, and pilomatrixoma.

Source: TumorPortal.org
PubMed ID's
19619488, 22682243
Expand Collapse Beta-Catenin (CTNNB1)  in Bone and Soft Tissue Sarcoma
CTNNB1 mutations are highly common in desmoid fibromatosis. This non-metastatic neoplasm is rare in the general population but common in patients with familial cancer predisposition conditions known as familial adenomatous polyposis (FAP) or Gardner syndrome. Within fibromatosis/desmoid tumors, specific S45F mutations in CTNNB1 are associated with a worse 5-year recurrence-free survival compared to tumors with other or no CTNNB1 mutations. In addition, increased local recurrence has been associated with the S45F mutation in this neoplasm.

A single study has identified mutations in CTNNB1 (T41A, S45F and S45P) in the sporadic desmoid tumors of children, which was not associated with familial adenomatous polyposis.

CTNNB1 mutations are highly common in desmoid fibromatosis. This non-metastatic neoplasm is rare in the general population but common in patients with familial cancer predisposition conditions known as familial adenomatous polyposis (FAP) or Gardner syndrome. Within fibromatosis/desmoid tumors, specific S45F mutations in CTNNB1 are associated with a worse 5-year recurrence-free survival compared to tumors with other or no CTNNB1 mutations. In addition, increased local recurrence has been associated with the S45F mutation in this neoplasm.

A single study has identified mutations in CTNNB1 (T41A, S45F and S45P) in the sporadic desmoid tumors of children, which was not associated with familial adenomatous polyposis.

PubMed ID's
18832571, 22372443
Expand Collapse No mutation selected
The mutation of a gene provides clinicians with a very detailed look at your cancer. Knowing this information could change the course of your care. To learn how you can find out more about genetic testing please visit http://www.massgeneral.org/cancer/news/faq.aspx or contact the Cancer Center.

Share with your Physican

Print information for your Physician.

Print information

Your Matched Clinical Trials

Trial Matches: (D) - Disease, (G) - Gene
Trial Status: Showing Results: 1-10 of 27 Per Page:
123Next »
Protocol # Title Location Status Match
NCT03092323 A Randomized Trial of Pembrolizumab & Radiotherapy Versus Radiotherapy in High-Risk Soft Tissue Sarcoma of the Extremity A Randomized Trial of Pembrolizumab & Radiotherapy Versus Radiotherapy in High-Risk Soft Tissue Sarcoma of the Extremity MGH Open D
NCT02659020 A Study of Olaratumab (LY3012207) in Participants With Advanced Soft Tissue Sarcoma A Study of Olaratumab (LY3012207) in Participants With Advanced Soft Tissue Sarcoma MGH Open D
NCT03126591 A Study of Olaratumab (LY3012207) Plus Pembrolizumab in Participants With Advanced or Metastatic Soft Tissue Sarcoma A Study of Olaratumab (LY3012207) Plus Pembrolizumab in Participants With Advanced or Metastatic Soft Tissue Sarcoma MGH Open D
NCT00585195 A Study Of Oral PF-02341066, A C-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer A Study Of Oral PF-02341066, A C-Met/Hepatocyte Growth Factor Tyrosine Kinase Inhibitor, In Patients With Advanced Cancer MGH Open D
NCT02748135 A Two-Part Study of TB-403 in Pediatric Subjects With Relapsed or Refractory Medulloblastoma A Two-Part Study of TB-403 in Pediatric Subjects With Relapsed or Refractory Medulloblastoma MGH Open D
NCT02278250 An Open-Label Study of the Safety, Tolerability, and Pharmacokinetic/Pharmacodynamic Profile of VX-803/M4344 as a Single Agent and in Combination With Cytotoxic Chemotherapy in Participants With Advanced Solid Tumors An Open-Label Study of the Safety, Tolerability, and Pharmacokinetic/Pharmacodynamic Profile of VX-803/M4344 as a Single Agent and in Combination With Cytotoxic Chemotherapy in Participants With Advanced Solid Tumors MGH Open D
NCT02568267 Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions) MGH Open D
NCT02867592 Cabozantinib-S-Malate in Treating Younger Patients With Recurrent, Refractory, or Newly Diagnosed Sarcomas, Wilms Tumor, or Other Rare Tumors Cabozantinib-S-Malate in Treating Younger Patients With Recurrent, Refractory, or Newly Diagnosed Sarcomas, Wilms Tumor, or Other Rare Tumors MGH Open D
NCT03002805 CBT-1® in Combination With Doxorubicin in Patients With Metastatic, Unresectable Sarcomas Who Previously Progressed on Doxorubicin CBT-1® in Combination With Doxorubicin in Patients With Metastatic, Unresectable Sarcomas Who Previously Progressed on Doxorubicin MGH Open D
NCT02454972 Clinical Trial of Lurbinectedin (PM01183) in Selected Advanced Solid Tumors Clinical Trial of Lurbinectedin (PM01183) in Selected Advanced Solid Tumors MGH Open D
Trial Status: Showing Results: 1-10 of 27 Per Page:
123Next »

Share with your Physican

Print information for your Physician.

Print information